Context-specific interactions between Notch and ALK1 cannot explain ALK1-associated arteriovenous malformations.

نویسندگان

  • Elizabeth R Rochon
  • Daniel S Wright
  • Max M Schubert
  • Beth L Roman
چکیده

AIMS Notch and activin receptor-like kinase 1 (ALK1) have been implicated in arterial specification, angiogenic tip/stalk cell differentiation, and development of arteriovenous malformations (AVMs), and ALK1 can cooperate with Notch to up-regulate expression of Notch target genes in cultured endothelial cells. These findings suggest that Notch and ALK1 might collaboratively program arterial identity and prevent AVMs. We therefore sought to investigate the interaction between Notch and Alk1 signalling in the developing vertebrate vasculature. METHODS AND RESULTS We modulated Notch and Alk1 activities in zebrafish embryos and examined effects on Notch target gene expression and vascular morphology. Although Alk1 is not necessary for expression of Notch target genes in arterial endothelium, loss of Notch signalling unmasks a role for Alk1 in supporting hey2 and ephrinb2a expression in the dorsal aorta. In contrast, Notch and Alk1 play opposing roles in hey2 expression in cranial arteries and dll4 expression in all arterial endothelium, with Notch inducing and Alk1 repressing these genes. Although alk1 loss increases expression of dll4, AVMs in alk1 mutants could neither be phenocopied by Notch activation nor rescued by Dll4/Notch inhibition. CONCLUSION Control of Notch targets in arterial endothelium is context-dependent, with gene-specific and region-specific requirements for Notch and Alk1. Alk1 is not required for arterial identity, and perturbations in Notch signalling cannot account for alk1 mutant-associated AVMs. These data suggest that AVMs associated with ALK1 mutation are not caused by defective arterial specification or altered Notch signalling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arteriovenous malformations in hereditary haemorrhagic telangiectasia: looking beyond ALK1-NOTCH interactions.

Hereditary haemorrhagic telangiectasia (HHT) is characterized by the development of arteriovenous malformations--enlarged shunts allowing arterial flow to bypass capillaries and enter directly into veins. HHT is caused by mutations in ALK1 or Endoglin; however, the majority of arteriovenous malformations are idiopathic and arise spontaneously. Idiopathic arteriovenous malformations differ from ...

متن کامل

Common and distinctive pathogenetic features of arteriovenous malformations in hereditary hemorrhagic telangiectasia 1 and hereditary hemorrhagic telangiectasia 2 animal models--brief report.

OBJECTIVE Hereditary hemorrhagic telangiectasia is a genetic disorder characterized by visceral and mucocutaneous arteriovenous malformations (AVMs). Clinically indistinguishable hereditary hemorrhagic telangiectasia 1 and hereditary hemorrhagic telangiectasia 2 are caused by mutations in ENG and ALK1, respectively. In this study, we have compared the development of visceral and mucocutaneous A...

متن کامل

Interaction between alk1 and blood flow in the development of arteriovenous malformations.

Arteriovenous malformations (AVMs) are fragile direct connections between arteries and veins that arise during times of active angiogenesis. To understand the etiology of AVMs and the role of blood flow in their development, we analyzed AVM development in zebrafish embryos harboring a mutation in activin receptor-like kinase I (alk1), which encodes a TGFβ family type I receptor implicated in th...

متن کامل

PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia

Activin receptor-like kinase 1 (ALK1) is an endothelial serine-threonine kinase receptor for bone morphogenetic proteins (BMPs) 9 and 10. Inactivating mutations in the ALK1 gene cause hereditary haemorrhagic telangiectasia type 2 (HHT2), a disabling disease characterized by excessive angiogenesis with arteriovenous malformations (AVMs). Here we show that inducible, endothelial-specific homozygo...

متن کامل

De novo cerebrovascular malformation in the adult mouse after endothelial Alk1 deletion and angiogenic stimulation.

BACKGROUND AND PURPOSE In humans, activin receptor-like kinase 1 (Alk1) deficiency causes arteriovenous malformations (AVMs) in multiple organs, including the brain. Focal Alk1 pan-cellular deletion plus vascular endothelial growth factor stimulation induces brain AVMs in the adult mouse. We hypothesized that deletion of Alk1 in endothelial cell (EC) alone plus focal vascular endothelial growth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 107 1  شماره 

صفحات  -

تاریخ انتشار 2015